卡套球阀,氧气阀,氧气减压阀,不锈钢氧气阀供应商
                 
  产品搜索 Products Search
  产品目录 Products
闸阀
  ·排渣闸阀,排渣闸阀型号
  ·弹性座封闸阀,暗杆弹性座封闸阀,明杆弹性座封闸阀
  ·法兰闸阀,不锈钢法兰闸阀,国标法兰闸阀,美标法兰闸阀
  ·钢制楔式闸阀,不锈钢制楔式闸阀,手动钢制楔式闸阀
  ·铸铁楔式闸阀,铸铁楔式闸阀尺寸,铸铁楔式闸阀价格
  ·气动钢制排渣闸阀,PZ641H气动钢制排渣闸阀
  ·锥齿轮传动楔式闸阀
  ·暗杆楔式单闸板闸阀,暗杆闸阀,暗杆闸阀图片,暗杆闸阀尺寸,暗杆闸阀价格
  ·承插焊楔式闸阀,承插焊楔式闸阀尺寸,不锈钢承插焊楔式闸阀
  ·电动不锈钢楔式闸阀,电动不锈钢楔式闸阀原理,电动不锈钢楔式闸阀图片
  ·电动楔式闸阀,电动楔式闸阀原理,电动楔式闸阀尺寸
  ·电动楔式铸铁闸阀
  ·锥齿轮传动楔式闸阀,锥齿轮传动楔式闸阀尺寸
  ·法兰连接电动排渣阀
  ·高压电站闸阀
  ·平行式双闸板闸阀
  ·气动浆液阀,气动浆液阀型号
  ·美标闸阀,美标钢制闸阀,美标钢制闸阀图片,美标钢制闸阀尺寸
球阀
  ·内螺纹球阀_内螺纹球阀图片_内螺纹球阀尺寸
  ·广式球阀_法兰广式球阀_广式法兰球阀图片
  ·三片式球阀_三片式球阀尺寸_三片式球阀图片
  ·浮动式球阀_浮动式球阀型号
  ·自动复位球阀_弹簧自动复位球阀_自动复位球阀原理
  ·衬氟球阀-衬氟球阀型号-衬氟球阀尺寸
  ·锻钢球阀,锻钢球阀型号,锻钢球阀尺寸
  ·不锈钢球阀,不锈钢球阀型号,不锈钢球阀图片
  ·气动球阀,防暴气动球阀,气动球阀原理,不锈钢气动球阀
  ·法兰球阀,法兰球阀尺寸,不锈钢法兰球阀
  ·三通球阀,三通球阀尺寸,T型三通球阀,不锈钢三通球阀
蝶阀
  ·衬氟蝶阀,衬四氟蝶阀,衬氟蝶阀尺寸
  ·气动蝶阀,不锈钢气动蝶阀,气动软密封蝶阀
  ·对夹式蝶阀,对夹式硬密封蝶阀
  ·软密封蝶阀
截止阀
  ·柱塞截止阀,柱塞截止阀尺寸
  ·氧气专用截止阀,氧气截止阀原理,氧气专用截止阀尺寸
  ·锻钢截止阀,锻钢法兰截止阀,锻钢波纹管截止阀
  ·低温截止阀-不锈钢低温截止阀-低温截止阀尺寸
  ·衬氟截止阀,防腐截止阀,衬四氟截止阀
  ·保温夹套直流式截止阀,保温夹套直流式截止阀尺寸
  ·节流截止放空阀,节流截止放空阀图片
  ·Y型截止阀-Y型截止阀型号-Y型截止阀尺寸
  ·不锈钢截止阀,不锈钢截止阀图片,不锈钢截止阀型号
  ·衬氟角式截止阀,耐腐衬氟角式截止阀
  ·衬胶截止阀,衬胶手动截止阀,衬胶法兰截止阀
  ·国标低温截止阀,国标低温截止阀尺寸,国标低温截止阀标准
  ·法兰截止阀,法兰铸钢截止阀,不锈钢法兰截止阀
  ·高压对焊截止阀,高压对焊截止阀标准
  ·国标截止阀,国标截止阀图片,国标截止阀尺寸
  ·角式截止阀,角式截止阀型号,角式截止阀尺寸
  ·美标波纹管截止阀,不锈钢美标波纹管截止阀,美标波纹管截止阀尺寸
  ·燃气截止阀,液化气截止阀,天然气截止阀
  ·针型截止阀,不锈钢针型截止阀
  ·焊接针型截止阀♀J61Y高压高温针型截止阀
  ·承插焊截止阀,承插焊截止阀图片,承插焊截止阀尺寸
  ·多功能截止阀,CJ123H型号
  ·内外螺纹截止阀,内外螺纹截止阀尺寸
  ·内螺纹截止阀,内螺纹截止阀型号
  ·外螺纹截止阀,J23W外螺纹截止阀
  ·外螺纹截止阀,外螺纹截止阀图片,外螺纹截止阀尺寸
  ·美标截止阀,美标法兰截止阀,美标波纹管截止阀
  ·氨气截止阀,氨气截止阀尺寸
  ·高温截止阀,高温截止阀型号
  ·卡套截止阀,卡套式截止阀,卡套截止阀图片
  ·角座阀-气动角座阀-不锈钢角座阀-角座阀尺寸
调节阀
  ·气动调节阀,不锈钢气动调节阀,气动调节阀原理
  ·电动调节阀,电动温度调节阀,电动三通调节阀
  ·自立式调节阀,自力式压力阀,自力式微压调节阀
电磁阀
减压阀
柱塞阀
止回阀
  ·不锈钢止回阀,泵房止回阀,不锈钢止回阀原理
  ·超薄型止回阀,超薄型止回阀原理,超薄型止回阀尺寸
  ·衬氟止回阀 -衬氟止回阀尺寸
  ·衬胶止回阀 防腐衬胶止回阀 橡胶衬里止回阀
  ·蝶形止回阀 蝶式止回阀 不锈钢蝶式止回阀
  ·内螺纹止回阀-内螺纹止回阀原理-内螺纹止回阀尺寸
  ·对夹式止回阀 弹簧对夹式止回阀 不锈钢对夹式止回阀
  ·单向阀,卡套式单向阀,内螺纹单向阀
过滤器
  ·手摇式过滤器
  ·T型过滤器
  ·Y型过滤器
  ·高低接管弧底型过滤器
  ·精细过滤器
  ·立式低进测出过滤器
  ·卧式过滤器
  ·直通弧底过滤器
  ·直通平底型过滤器
  ·压差自控过滤器
  ·不锈钢空气过滤器,不锈钢空气过滤器生产厂家
氧气阀门
  ·铜氧气阀,铜氧气阀尺寸,氧气专用截止阀
  ·氧气减压阀,不锈钢氧气减压阀,氧气专用减压阀
  ·氧气截止阀,氧气专用截止阀,氧气截止阀尺寸
  ·氧气截止阀,氧气专用截止阀,氧气截止阀尺寸
  ·氧气过滤器, 氧气Y型过滤器, 燃气Y型过滤器, 氧气专用过滤器
  ·氧气阀,角式氧气阀
  ·青铜闸阀,美标青铜闸阀,德标青铜闸阀
  ·青铜截止阀,美标青铜截止阀,德标青铜截止阀
  ·青铜球阀,美标青铜球阀,德标青铜球阀
美标阀门
  ·美标截止阀,美标法兰截止阀,美标截止阀标准
  ·美标闸阀,美标闸阀型号,美标闸阀尺寸
  ·美标止回阀,美标止回阀型号,不锈钢美标止回阀
  ·美标闸阀,美标闸阀尺寸,不锈钢美标闸阀
卫生级阀门
  ·卫生级蝶阀,卫生级快装蝶阀,卫生级卡箍蝶阀,气动卫生级蝶阀
  ·卫生级球阀,卫生级快装球阀,卫生级卡箍球阀,卫生级电动球阀
  ·卫生级安全阀,卫生级快装安全阀,卫生级卡箍安全阀
波纹管阀门
  ·德标波纹管截止阀,德标波纹管截止阀尺寸,德标波纹管截止阀标准
  ·波纹管球阀,波纹管球阀型号,波纹管球阀尺寸
  ·波纹管截止阀-波纹密封管截止阀-氢气波纹管截止阀
水利控制阀
  ·800X压差旁通阀♀800X压差旁通阀生产厂家♀800X压差旁通阀尺寸标准
  ·700X多功能水泵控制阀♀700X多功能水泵控制阀生产厂家♀700X多功能水泵控制阀尺寸
  ·600X水力电动控制阀♀上海600X水力电动控制阀生产厂家♀600X水力电动控制阀尺寸
  ·500X泄压阀♀500X泄压/持压阀♀上海500X泄压阀生产厂家♀500X泄压阀尺寸
  ·400X流量控制阀♀水泵流量控制阀♀上海400X流量控制阀生产厂家♀400X流量控制阀尺寸
  ·300X缓闭止回阀-缓闭止回阀尺寸标准-缓闭止回阀生产厂家
  ·200X减压稳压阀-上海200X减压稳压阀生产厂家-200X减压稳压阀尺寸
  ·100X遥控浮球阀 上海100X遥控浮球阀生产厂家 100X遥控浮球阀尺寸
  ·100X定水阀 上海100X遥控浮球阀生产厂家 水箱遥控浮球阀尺寸
保温阀_系列
仪表阀_针型阀
  ·卡套式球阀,双卡套球阀,单卡套球阀,卡套异径球阀,卡环式球阀
  ·三通卡套球阀,三通卡套式球阀,不锈钢三通卡套球阀
  ·仪表截止阀,仪表针形截止阀,焊接仪表截止阀,仪表针型阀
  ·卡套针阀,卡套式针阀,卡套针阀尺寸,卡套针型阀
  ·气源球阀,卡套式气源球阀,气动管路球阀
  ·J29W,压力计截止阀,不锈钢压力计截止阀
  ·J13W,内螺纹针型阀,不锈钢内螺纹针型阀
  联系我们 contact
公司:上海沃托阀门有限公司
手机:13671530603
电话:13917167566
电话:021-57522756
传真:021-33275154
地址:上海市奉贤区川南奉公路9860号
邮编:201400
网址:http://www.wtfm.cc
邮箱:lqgyyz@163.com
 
    技术文章 Article 您的位置:首页>技术文章>汽轮机调节阀设计的现状
汽轮机调节阀设计的现状
点击次数:487 来源网站:http://www.wtfm.cc 发布时间:2019-09-28

 1 前言

汽轮机的启停和功率的变化是通过调节阀开度的变化,从而改变进入汽轮机的蒸汽流量或蒸汽参数来实现的。作为汽轮机进汽机构的重要组成部分,调节阀气动性能的好坏会对整个汽轮机机组的经济性产生直接的影响。另外,调节阀中阀体的振动现象也存在于实际的运行中,类似阀杆振动、阀杆断裂、阀座拔起等事故曾经发生1~2,直接影响了机组的安全工作。造成阀体振动的主要原因是调节阀内汽流流动的不稳定,而汽流流动的不稳定又与流动的边界有密切的关系。不合理的流动边界使流体的流动无法控制,流动中产生的扰动向外扩散和不断增长,从而造成了汽流流动的不稳定。因此,无论是从经济性的角度还是安全性的角度来考虑,研究和分析汽轮机调节阀的内部流场,优化其气动性能,减小流动损失和稳定汽流,提高调节阀的流动效率和安全性,最终设计出汽动性能良好的调节阀无疑有重要的工程实际意义。

2 汽轮机调节阀设计的现状

目前调节阀结构优化主要基于冷态单阀体对比试验,获得流量特性、卸载室特性、提升力和相对稳定性基本特性,从中挑选出较优的型线组合方案,提供定常条件下的设计依据。实际调节阀设计计算主要依据流动相似理论、流体力学的相关原理和冷态试验数据来确定设计工况条件下几个关键部位尺寸,比如调节阀配合直径、阀座喉部和出口直径。传统设计方法比较简单,对大部分定常流态的运行负荷仍是可靠的。

流动相似理论指出:动力相似需要模型和实物两种流动在时空相似条件下各相似准则数都相等。与常规流体机械不同,汽轮机调节阀内产生非定常流动现象不仅随机性强,而且极其微妙和敏感。运行现场很难准确捕获发生流固耦合现象的根源所在,模化试验又难于真实重现不稳定现象。正是这些原因,调节阀模化设计欠缺实测和试验数据,更谈不上掌握其内部流动规律,限制了相似理论的应用,例如Strouhal时间相似准数中参数的确定至今缺乏研究。也就是说调节阀发生流固耦合现象所涉及的非定常流动缺乏模化设计方法。显然,从模型设计、加工、试验到数据转换到真实调节阀工作状态的实物设计完成,整个过程不仅周期长花费大,而且存在不少的不确定性,改进调节阀设计方法是十分必要的。

3 调节阀设计的新思路

近年来,随着计算流体力学和计算机技术的飞速发展,采用数值模拟手段对复杂流动问题进行研究成为可能。数值模拟手段不仅可以节约大量的人力和资金,最重要的特点是可以模拟和展现调节阀真实工作在高温高压状态下时其内部流动参数的变化和分布规律,尤其对全负荷变化范围都可以进行细节信息的获取。尽管调节阀内的非定常流动数值模拟研究还达不到实际要求,但在设计前首先进行调节阀全工况范围的三维真实工作参数和介质的数值模拟研究不仅弥补了试验研究的短缺,更重要的是可提供试验无法获得的数据。如为设计人员提供全面完整的流场信息,从而为降低流动损失、改善阀门稳定性提供思路,并能预测调节阀运行实况。新的设计方法应该是先选出多种阀门型线组合方案,然后进行大量的数值模拟,从计算结果中获得一定量指导性依据后,针对不同使用要求和配汽方式再进行内部流场结构的优化,以完善设计。模化试验仅对典型工况和挑选的阀门型式进行。最终结合试验和运行数据形成完整的设计方案,其设计流程如图 1 所示。本思路对完善传统设计方法不仅必要,而且完全可行,既可节省大量的试验经费,又可使设计水平显著提高。

1.png

图 1 调节阀新设计思路的流程图

基于上述思路,文中将介绍调节阀三维流场的数值计算方法,并且对某特定工况下的调节阀流场进行数值计算。在充分掌握阀门流动特性和细节流动信息的基础上,对阀内流场进行初步优化。。

4 数值计算方法

4.1 几何结构及湍流模型

我们以厂家提供的型线阀为例,基本结构如图 2 所示,其中三维坐标的X轴为汽流进口方向,Y轴为汽流出口的逆方向,右手定则确定Z轴方向。

2.png

图 2 汽轮机调节阀结构示意图

显然,调节阀工作在高温高压蒸汽条件下,其流动为三维、可压缩、粘性湍流流动。计算采用三维雷诺平均守恒型Navier-Stokes方程,湍流模型先后选用了Realizablek-ε模型和标准k-ε模型,经比较,两者计算结果差别不明显,最终选用较常用的标准k-ε湍流模型。采用二阶差分格式离散方程,用 SIMPLE 算法求解控制方程。气体状态方程计算公式:

P=ρRTa(1+Bρ+Cρ2)

其中:P—汽体压力;ρ—汽体密度;R—汽体常数;T—汽体温度;B和C—系数。

4.2 计算网格和边界条件

由于调节阀型腔结构复杂,采用分块结构化网格,图 3 给出了调节阀的三维计算网格示意。基于阀门结构的对称性,计算时取其一半即可,网格单元数约为90万。

3.png

图 3 调节阀的三维计算网格

边界条件按设计数据给定的参数,进口参数为:进口总压P0和总温T0,出口为静压P1。因调节阀外壁有保温措施,所以壁面采用绝热假定与实际有非常好的近似。对壁面附近的粘性支层的处理有两种方法,即低Re模型和壁面函数法。壁面函数法采用半经验公式来反映壁面对近壁区流动的影响,在工程湍流的计算中得到了较为广泛的应用。壁面函数法又可分为两种:标准壁面函数法和非平衡壁面函数法,本文采用标准壁面函数法。汽流进口考虑到电厂锅炉管道经过长距离输送的充分混合后均匀进入到汽轮机,因此,计算时调节阀进口边界汽流参数认为是均匀的,同时只有沿管道的轴向速度Vin。进口湍流脉动动能Kin及耗散率εin参照管流经验公式:

Kin=0.5%×V2in

εin=K3/2in 3/4Cμ/δ

式中:Cμ=0.09,δ—进口截面的当量半径。

5 算例分析

据厂家提供的数据,调节阀的配合直径D为125mm,阀进口总压P0为8.820MPa,进口总温 T0为 808K。定义相对升程 L=L/D,其中L为阀门的提升高度,D为阀门的配合直径。压比ε=P1/P0,P1为阀门的出口静压力。通过对此种型线阀在不同升程和不同压比条件下进行大量的数值计算,能够掌握阀门的整体流动特性。调节阀的流道结构主要分为3个部分:阀腔、阀碟下表面和阀座上表面组成的环行通道及阀座扩压通道。汽流由进口流入阀腔的较大空间后,流速有所减小,在阀腔内汽流的气动参数基本上不发生变化,但当汽流一进入阀碟和阀座构成的环行通道后,在极其短的行程中,蒸汽剧烈的膨胀,静压迅速降低,流速快速增大,尤其在中小升程。随着汽流流入阀座扩压段,其静压力又会缓慢的增加直至出口。数值计算不但能够掌握调节阀的整体流动特点,更为重要的是它可以提供阀内流场的细节信息,从而使设计者能够通过对流场结构的分析,找出流动不合理的问题所在,并适当地调整现有的阀碟或者阀座的型线,以达到改善阀门通流特性,降低损失,提高阀门稳定性的目的。就本文所选取的调节阀来讲,当整个机组在额定工况下运行时,阀门的相对升程 L=28.8%,压比 ε=0.95,在此工况下对调节阀流场进行数值计算,其Ma分布如图 4 所示。

4.png

图4 L=28.8%,ε=0.95 时中分面上的 Ma 等值线图

整体而言,此工况下汽流的流速不高,Ma数较小,气流的流动损失不大。但是在阀碟下方的局部区域内存在的低速气流,在这一区域内Ma数很小,其值不足0.1,习惯上此区域被称为空穴区。空穴区的形成是因为气流以一定的角度流入阀座,如图 5 所示。当加速汽流进入阀座时,会使阀碟下部与气流脱离并在其下方形成一个空穴区。在粘性输运的作用下,空穴里的气体会不断被其下游的气流带走,这种抽吸作用会使空穴内压力下降,形成低压区。当空穴内汽体压力下降到一定程度时,它周围的汽流就会渗入进来填补空穴,就这样,空穴内的汽流一边不停地被抽吸走,一边又有汽流进来填补。这种抽吸行为是一种非稳态的流动,空穴中气压时刻在变化,这样就会导致作用在阀碟下部的压力也发生脉动变化,进而可能引起阀体振动。此外对于阀门的通流特性来说,空穴区也是“无用区”。

5.png

图 5 空穴区形成的结构示意图

为了有效地消除空穴区对阀门稳定流动的不利影响,首先我们对图 4 所示工况的流场进行分析,最直接的想法就是用实体部分填充空穴区,为此我们在阀碟下方延长出一块和空穴区的形状大小近似相同的部分。改型后的结构如图 6 所示。

6.png

图 6 改型后的型线结构示意图

对改型后的调节阀在与改型前完全相同的进出口条件下进行数值计算。其中分面上的Ma数分布如图 7 所示。对比图 4 和图 7 可以发现,改型后的阀门整体上仍然维持低Ma数的流动特点,并且阀碟下方的汽流速度相应增加,同未改型前相比,Ma数由原来的最低0.05变到0.15以上,也就是说空穴区基本消失。另一方面改型前后两阀门的通流量分别为 40.912kg/s 和 41.273kg/s,可见对阀门的改型也并未影响通流能力。为此我们认为改型方案是成功的。

7.png

图 7 改型后调节阀中分面上的Ma数分布

以上我们用一个例子说明了本文所提出的新的调节阀设计思路中,通过数值计算来了解内部流场的细节,在此基础上找到流场不合理的问题所在,并通过适当的调整阀门型线来优化内部流场结构,从而达到提高阀门气动性能的目的,这也是本文所提出的新阀门设计思路中的核心部分。

6 结束语

在深入分析现有汽轮机调节阀设计方法的基础上,提出了新的调节阀设计思路。在新的设计思路中引入数值计算的步骤,通过数值计算了解阀门内部的细节流动信息,找出流场不合理的问题所在,并通过适当的措施改善和优化内部流场结构,从而达到提高阀门气动性能和增强汽流稳定性的目的。在此基础上对典型工况进行模型试验,最终完成阀门的设计。

自力式氮封阀
电动调节阀
气动薄膜调节阀
电动衬氟调节阀
电动温度调节阀
铸钢气动衬氟球阀
GB标准气动球阀
气动硬密封蝶阀
返回首页 | 关于我们 | 联系我们 沃托阀门©卡套球阀,氧气阀,氧气减压阀,不锈钢氧气阀 版权所有 沪ICP备16051537号-1
网站合作【站长QQ54887299


在线咨询
扫一扫
关注公众号